Deletion of the loop region of Bcl-2 completely blocks paclitaxel-induced apoptosis.
نویسندگان
چکیده
At high concentrations, the tubule poison paclitaxel is able to kill cancer cells that express Bcl-2; it inhibits the antiapoptotic activity of Bcl-2 by inducing its phosphorylation. To localize the site on Bcl-2 regulated by phosphorylation, mutant forms of Bcl-2 were constructed. Mutant forms of Bcl-2 with an alteration in serine at amino acid 70 (S70A) or with deletion of a 60-aa loop region between the alpha1 and alpha2 helices (Deltaloop Bcl-2, which also deletes amino acid 70) were unable to be phosphorylated by paclitaxel treatment of MDA-MB-231 cells into which the genes for the mutant proteins were transfected. The Deltaloop mutant completely inhibited paclitaxel-induced apoptosis. In cells expressing the S70A mutant, paclitaxel induced about one-third the level of apoptosis seen with wild-type Bcl-2. To evaluate the role of mitogen-activated protein kinases (MAPKs) in Bcl-2 phosphorylation, the activation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and p38 was examined. Paclitaxel-induced apoptosis was associated with phosphorylation of Bcl-2 and activation of ERK and JNK MAPKs. If JNK activation was blocked by transfections with either a stress-activated protein kinase kinase dominant-negative (K-->R) gene (which prevents the activation of a kinase upstream of JNK) or MAPK phosphatase-1 gene (which dephosphorylates and inactivates JNK), Bcl-2 phosphorylation did not occur, and the cells were not killed by paclitaxel. By contrast, neither an ERK inhibitor (PD098059) nor p38 inhibitors (SB203580 and SB202190) had an effect on Bcl-2 phosphorylation. Thus, our data show that the antiapoptotic effects of Bcl-2 can be overcome by phosphorylation of Ser-70; forms of Bcl-2 lacking the loop region are much more effective at preventing apoptosis than wild-type Bcl-2 because they cannot be phosphorylated. JNK, but not ERK or p38 MAPK, appear to be involved in the phosphorylation of Bcl-2 induced by paclitaxel.
منابع مشابه
Induction of tumor necrosis factor by bryostatin 1 is involved in synergistic interactions with paclitaxel in human myeloid leukemia cells.
Interactions between the protein kinase C (PKC) activator/down-regulator bryostatin 1 and paclitaxel have been examined in human myeloid leukemia cells (U937) and in highly paclitaxel-resistant cells ectopically expressing a Bcl-2 phosphorylation loop-deleted protein (Delta Bcl-2). Treatment (24 hours) of wild-type cells with paclitaxel (eg, 5 to 20 nM) in combination with 10 nM bryostatin 1 in...
متن کاملBcl-2–Mediated Drug Resistance
Bcl-2 inhibits apoptosis induced by a variety of stimuli, including chemotherapy drugs and glucocorticoids. It is generally accepted that Bcl-2 exerts its antiapoptotic effects mainly by dimerizing with proapoptotic members of the Bcl-2 family such as Bax and Bad. However, the mechanism of the antiapoptotic effects is unclear. Paclitaxel and other drugs that disturb microtubule dynamics kill ce...
متن کاملSynergistic Anticancer Effect of Paclitaxel and Noscapine on Human Prostate Cancer Cell Lines
Paclitaxel is the one of the most common chemotherapeutic drugs used for the treatment of prostate cancer. However, its current clinical utility has been limited due to numerous serious side effects and drug resistance. Noscapine is an antitussive opium alkaloid that showed antitumor activity against a variety of cancer while has not exhibited severe side effects. This study investigates the a...
متن کاملSynergistic Anticancer Effect of Paclitaxel and Noscapine on Human Prostate Cancer Cell Lines
Paclitaxel is the one of the most common chemotherapeutic drugs used for the treatment of prostate cancer. However, its current clinical utility has been limited due to numerous serious side effects and drug resistance. Noscapine is an antitussive opium alkaloid that showed antitumor activity against a variety of cancer while has not exhibited severe side effects. This study investigates the a...
متن کاملPaclitaxel directly binds to Bcl-2 and functionally mimics activity of Nur77.
We reported previously that Bcl-2 is paradoxically down-regulated in paclitaxel-resistant cancer cells. We reveal here that paclitaxel directly targets Bcl-2 in the loop domain, thereby facilitating the initiation of apoptosis. Molecular modeling revealed an extraordinary similarity between the paclitaxel binding sites in Bcl-2 and beta-tubulin, leading us to speculate that paclitaxel could be ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 96 7 شماره
صفحات -
تاریخ انتشار 1999